<table>
<thead>
<tr>
<th>FIRST YEAR FALL SEMESTER 2016</th>
<th>Credits</th>
<th>FIRST YEAR SPRING SEMESTER 2017</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1035 General Chemistry Co: MATH 1025 or 1225</td>
<td>3</td>
<td>CHEM 1036 General Chemistry Pre: CHEM 1035 or 1055 or 1055H</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1045 General Chemistry Lab Co: CHEM 1035</td>
<td>1</td>
<td>ENGL 1106 First-Year Writing Pre: ENGL 1105</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1105 First-Year Writing</td>
<td>3</td>
<td>MATH 1226 Calculus of a Single Variable Pre: MATH 1225 (C-)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 1225 Calculus of a Single Variable (C-) Pre: Math Ready</td>
<td>4</td>
<td>PHYS 2305 Foundations of Physics Co: PHYS 2325 or MATH 1206 or MATH 1206H or MATH 1226; Pre: MATH 1205 or MATH 1205H or MATH 1225 or MATH 1206 or MATH 1206H or MATH 1226</td>
<td>4</td>
</tr>
<tr>
<td>ENGE 1215 Foundations of Engineering (C-) Co: MATH 1225</td>
<td>2</td>
<td>ENGE 1216 Foundations of Engineering (C-) Pre: ENGE 1215 (C-)</td>
<td>2</td>
</tr>
<tr>
<td>CLE (Area 2, 3, or 7)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL 16</td>
<td></td>
<td>TOTAL 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND YEAR FALL SEMESTER 2017</th>
<th>Credits</th>
<th>SECOND YEAR SPRING SEMESTER 2018</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1105 Principles of Biology - OR - BIOL 1205H Honors Biology</td>
<td>3 [F,S]</td>
<td>BIOL 1106 Principles of Biology - OR - BIOL 1206H Honors Biology</td>
<td>3 [F,S]</td>
</tr>
<tr>
<td>MATH 2114 Introduction to Linear Algebra Pre: MATH 1225 (B) or MATH 1226</td>
<td>3</td>
<td>MATH 2214 Introduction to Differential Equations Pre: (MATH 1114 or 1114H or MATH 2114 or 2114H), (MATH 1206 or MATH 1226)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2204 Introduction to Multivariable Calculus Pre: MATH 1226</td>
<td>3</td>
<td>PHYS 2306 Foundations of Physics Pre: (MATH 1206 or MATH 1206H or MATH 1226), PHYS 2305</td>
<td>4</td>
</tr>
<tr>
<td>ESM 2104 Statics Co: MATH 2224 or MATH 2224H or MATH 2204 or MATH 2204H or MATH 2406H</td>
<td>3</td>
<td>ESM 2304 Dynamics Pre: 2104, (MATH 2224 or MATH 2224H or MATH 2204 or MATH 2204H) Co: MATH 2214</td>
<td>3</td>
</tr>
<tr>
<td>BSE 2004 Introduction to Biological Systems Engineering Pre: ENGE 1024 or ENGE 1215</td>
<td>2 [F,S]</td>
<td>BSE 3144 Engineering Analysis for Biological Systems using Numerical Methods Pre/Co: MATH 2214</td>
<td>2 [S]</td>
</tr>
<tr>
<td>CLE (Area 2, 3, or 7)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL 17</td>
<td></td>
<td>TOTAL 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD YEAR FALL SEMESTER 2018</th>
<th>Credits</th>
<th>THIRD YEAR SPRING SEMESTER 2019</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 3704 Statistics for Engineering Applications Pre: MATH 2224 or MATH 2204 or MATH 2204H</td>
<td>2 [F,S,S]</td>
<td>BIOL 2604 General Microbiology Pre: (Biol 1005 or BIOL 1105 or BIOL 1205H or ICR 2105), (BIOL 1006 or BIOL 1106 or BIOL 1206H), (CHEM 1036 or CHEM 1056 or CHEM 1036H or CHEM 1056H or CHEM 1016 or ICR 2105)</td>
<td>3 [F,S]</td>
</tr>
<tr>
<td>ESM 3024 Introduction to Fluid Mechanics Pre: 2304, (MATH 2224 or MATH 2204 or MATH 2204H)</td>
<td>3 [F,S,S]</td>
<td>BSE 3504 Transport Processes in Biological Systems Pre: 3154, ESM 3024</td>
<td>3 [S]</td>
</tr>
<tr>
<td>BSE 3134 Biological Systems Engineering Seminar Pre: BSE 2004</td>
<td>1 [F]</td>
<td>BSE Elective</td>
<td>3</td>
</tr>
<tr>
<td>BSE 3154 Thermodynamics of Biological Systems Pre: ESM 2304, (MATH 2224 or MATH 2224H or MATH 2204 or MATH 2204H); Pre/Co: Fluid Mechanics</td>
<td>3 [F]</td>
<td>BSE Elective: BSE 3334 Nonpoint Source Pollution Assessment and Control Pre: 3324 – OR – BSE 3524 Unit Operations in Biological Systems Engineering Co: 3504</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>CLE (Area 2, 3, or 7)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL 15</td>
<td></td>
<td>TOTAL 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOURTH YEAR FALL SEMESTER 2019</th>
<th>Credits</th>
<th>FOURTH YEAR SPRING SEMESTER 2020</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISE 2014 Engineering Economy Pre: ENGE 1024 or ENGE 1215 or BC 1224</td>
<td>2</td>
<td>BSE 4126 Comprehensive Design Project Pre: 4125</td>
<td>3 [S]</td>
</tr>
<tr>
<td>BSE 4125 Comprehensive Design Project Pre: 3334 or 3524</td>
<td>2 [F]</td>
<td>BSE Elective</td>
<td>3</td>
</tr>
<tr>
<td>BSE Elective</td>
<td>3</td>
<td>Engineering Topics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Topics Elective</td>
<td>3</td>
<td>Engineering Topics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>2</td>
</tr>
<tr>
<td>CLE (Area 2, 3, or 7)</td>
<td>3</td>
<td>CLE (Area 2, 3, or 7)</td>
<td>3</td>
</tr>
<tr>
<td>CLE (Area 6)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL 17</td>
<td></td>
<td>TOTAL 17</td>
<td></td>
</tr>
</tbody>
</table>
General Information about Checksheet: Superscripted annotation [F,S,SI,SI] in Credits column indicates that a course is known to be offered in terms other than when shown. Course offerings are subject to change and the availability of sufficient resources. Students should confirm course offerings in advance with their department.

Curriculum for Liberal Education (CLE)
Consult the CLE Alphabetical Listing at: http://www.cle.prov.vt.edu/guides/alpha.html. CLE courses need to be completed prior to graduation.

<table>
<thead>
<tr>
<th>CLE Area</th>
<th>Course Code</th>
<th>Credits</th>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1: Writing and Discourse (6 hrs)</td>
<td>ENGL 1105</td>
<td>(3)</td>
<td>ENGL 1106</td>
<td>(3)</td>
</tr>
<tr>
<td>Area 2: Ideas, Cultural Traditions, Values (6 hrs)</td>
<td></td>
<td>(3)</td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>Area 3: Society & Human Behavior (6 hrs)</td>
<td></td>
<td>(3)</td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>Area 4: Scientific Reasoning and Discovery (8 hrs)</td>
<td>PHYS 2305</td>
<td>(4)</td>
<td>PHYS 2306</td>
<td>(4)</td>
</tr>
<tr>
<td>Area 5: Quantitative and Symbolic Reasoning (8 hrs)</td>
<td>MATH 1225</td>
<td>(4)</td>
<td>MATH 1226</td>
<td>(4)</td>
</tr>
<tr>
<td>Area 6: Creativity & Aesthetic Experience (1 hr)</td>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 7: Global Issues (3 hrs)</td>
<td></td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If a CLE course is double-counted to satisfy two different CLE areas, a free elective(s) must be taken to maintain a minimum of 128 credits.

Electives: BSE majors must take 12 hours of BSE electives, 3 hours of chemistry electives, 9 hours of engineering topics electives, and 8 hours of technical electives. Students choose from the courses listed under each respective requirement, noting that some courses are not available to all students because some courses have prerequisites and some are restricted to majors in the offering department. Courses with substantial duplication (as determined by the BSE Undergraduate Curriculum Committee) of courses previously taken will not qualify for credit. Independent study (BSE 4974) and undergraduate research (BSE 4994) courses cannot be used as electives.

Change of Major Requirements: Please see http://www.enge.vt.edu/undergraduate-changing-majors.html

Foreign Language Requirements: Students must have had 2 years of a foreign language in high school or one year at the college level (6 credit hours) of the same language. College-level credits used to meet this requirement do not count towards the degree.

Satisfactory Progress Towards Degree: University Policy 91 outlines university-wide minimum criteria to determine if students are making satisfactory progress towards the completion of their degrees. The BSE Department fully supports this policy. Specific expectations for satisfactory progress for BSE majors are as follows:
- Each student must meet the minimum University-wide criteria as described in Policy 91 and summarized in the Undergraduate Catalog http://www.undergradcatalog.registrar.vt.edu/1617/academic-policies.html#22
- Maintain overall and in-major GPAs of at least 2.0 (in-major GPA based on all BSE-prefix courses taken);
- Be registered for at least one BSE-prefix course per semester, excluding BSE 2094, 2294, 2484, and 4994; and,
- Repeat no BSE course required in the major more than twice, including attempts ending in course withdrawal.

Statement of Hidden Prerequisites: Pre-requisites for each course are listed after the course title. The (letter grade) notation, such as (C-, indicates the minimum grade students must earn in the prerequisite course.
- There are no hidden prerequisites in this program of study.
- Prerequisites may change from what is indicated. Be sure to consult the University Catalog or check with your advisor for the most current requirements.
- A student must obtain a C- or better in all BSE courses.

Graduation Requirements: Students must pass all required courses, with a minimum grade of C- in all BSE-prefix courses. Both the overall and in-major GPA must be at least 2.0, where in-major GPA is based on all BSE-prefix courses taken. Only free electives and courses only offered on a Pass/Fail basis may be taken Pass/Fail.
Biological Systems Engineering Electives
2020 Checksheet

Courses with substantial duplication of courses taken previously will not qualify for credit. Independent study (DEPT NAME 4974) and undergraduate research (DEPT NAME 4994) courses cannot be used as electives.

Choose from the courses listed under each respective requirement, noting that some courses are not available to all students because some courses have prerequisites and some are restricted to majors in the offering department.

Biological Systems Engineering (BSE) Electives (12 credit hours required):

- BSE 2304 Landscape Measurement and Modeling
- BSE 3324 Small Watershed Hydrology
- BSE 3334 Nonpoint Source Pollution Assessment and Control
- BSE 3524 Unit Operations in Biological Systems Engineering
- BSE 3534 Bioprocess Engineering
- BSE 4224 Field Methods in Hydrology
- BSE 4304 Nonpoint Source Pollution Modeling and Management
- BSE 4344 Geographic Information Systems for Engineers
- BSE 4524 Biological Process Plant Design
- BSE 4544/CHE 4544 Protein Separation Engineering
- BSE 4564 Metabolic Engineering
- BSE 4604 Food Process Engineering

Chemistry (CHEM) Electives (3 credit hours required):

- BCHM 2024 Concepts of Biochemistry
- CHEM 2114 Analytical Chemistry
- CHEM 2124 Analytical Chemistry Laboratory Techniques and Practice
- CHEM 2514 Survey of Organic Chemistry
- CHEM 2535-2536 Organic Chemistry
- CHEM 2565-2566 Principles of Organic Chemistry
- CHEM 3615 Physical Chemistry
- CHEM 4615 Physical Chemistry for the Life Sciences
- CSES 4314/ENSC 4314 Water Quality
- CSES 4734/CHM 4734/ENSC 4734 Environmental Soil Chemistry
- GEOS 4634 Environmental Geochemistry

Engineering Topics Electives (9 credit hours required – students must request to be force-added to major-restricted courses):

All courses listed as Biological Systems Engineering electives, from top list, above

- BMES 2104 Introduction to Biomedical Engineering
- BMES 3124 Introduction to Biomechanics
- BMES 3134 Introduction to Biomedical Imaging
- CEE 3104 Introduction to Environmental Engineering
- CEE 4104 Water and Wastewater Treatment Design
- CEE 4114 Fundamentals of Public Health Engineering
- CEE 4134 Environmental Sustainability - A Systems Approach
- CEE 4144 Air Resources Engineering
- CEE 4174 Solid and Hazardous Waste Management
- CEE 4254 Municipal Engineering
- CEE 4264 Sustainable Land Development
- CEE 4314 Groundwater Resources
- CEE 4324 Open Channel Flow
- CEE 4334 Hydraulic Structures
- CEE 4344 Water Resources Planning
- ECE 3054 Electrical Theory
- ECE 4194 Engineering Principles of Remote Sensing
- ECE 4364 Alternate Energy Systems
- ENGE 2514 Introduction to Engineering Computation and Control with LabVIEW
- ESM 2204 Mechanics of Deformable Bodies

- ENGR 3124 Introduction to Green Engineering
- ENGR 4134 Environmental Life Cycle Assessment
- ESM 3054/MSE 3054 Mechanical Behavior of Materials
- ESM 3064/MSE 3064 Mechanical Behavior of Materials Laboratory
- ESM 4044 Mechanics of Composite Materials
- ESM 4105-4106 Engineering Analysis of Physiologic Systems
- ESM 4114 Nonlinear Dynamics and Chaos
- ESM 4204 Musculoskeletal Biomechanics
- ISE 2204 Manufacturing Processes
- ISE 2214 Manufacturing Processes Laboratory
- ISE 2404 Deterministic Operations Research
- ISE 4654 Principles of Industrial Hygiene
- ISE 4015 Management Systems Theory, Applications, and Design
- MSE 2034 Elements of Materials Engineering
- MSE 2044 Fundamentals of Materials Engineering
- MSE 2054 Fundamentals of Materials Science
- MSE 3304 Physical Metallurgy
- MSE 4574 Biomaterials
- MSE 4584 Biomimetic Materials
- MSE 4604 Composite Materials

*CEE courses are major-restricted at course request, but will be made available for non-CEE majors three days after the opening of drop/add.
Technical Electives (8 credit hours required – students must request to be force-added to major-restricted courses):

- All courses listed as Chemistry or Engineering Topics Electives, except 4754, 4964, 4974, 4984, 4994 in any department.
- All BIOL 1XXX laboratories and all 2000, 3000, and 4000 level courses, except 3504.
- CHEM 1046 General Chemistry Laboratory and all CHEM 2000, 3000, and 4000 level courses except 4014.
- All MATH 3000 and 4000 level courses except 4044, 4625, 4626, 4644, 4664, 4754, 4964, 4974, 4984, 4994

AAEC 3314 Environmental Law
ALS 3404 Ecological Agriculture: Theory and Practice
ALS 4614/NR 4614 Watershed Assessment, Management, and Policy
BCHM 3114 Biochemistry for Biotechnology and the Life Sciences
BCHM 4115-4116 General Biochemistry
BIOL 4164/CSES 4164/ENSC 4164 Environmental Microbiology
BMES 4064/BMVS 4064 Introduction to Medical Physiology
BSE 4394 Water Supply and Sanitation in Developing Countries
CS 1044 Introduction to Programming in C
CS 1054 Introduction to Programming in Java
CS 1064 Introduction to Programming in Python
CSES 3114/ENSC 3114/GEOS 3614 Soils
CSES 3124/ENSC 3124/GEOS 3624 Soils Laboratory
CSES 3304/GEOS 3304/GEOS 3304 Geomorphology
CSES 3444/HORT 3444 World Crops and Cropping Systems
CSES 3614/ENSC 3614 Soil Physical and Hydrological Properties
CSES 3634/ENSC 3634 Physics of Pollution
CSES 3644/ENSC 3644 Plant Materials for Environmental Restoration
CSES 4444/ENSC 4444 Managed Ecosystems, Ecosystem Services, and Sustainability
CS 4644 Land-based Systems for Waste Treatment
CS 4764/ENSC 4764 Bioremediation
CS 4774/ENSC 4774 Reclamation of Drastically Disturbed Lands
CS 4854/ENSC 4854 Wetland Soils and Mitigation
ECE 2164/AOE 2164 Exploration of the Space Environment
ENGR 1814 Energy, Resource Development, and the Environment
ENGR 2164/COS 2164 Introduction to Scienceering
ENSC 3604 Fundamentals of Environmental Science
ENSC 4414 Monitoring and Analysis of the Environment
ESM 4194/ME 4194 Sustainable Energy Solutions for a Global Society
FIW/FREC 4324 Genetics of Natural and Managed Populations
FIW 4614 Fish Ecology
FIW 4624 Marine Ecology
FREC 4374 Forested Wetlands
FST 3024: Principles of Sensory Evaluation
FST 3124 Brewing Science and Technology
FST 3604/BIOL 3604 Food Microbiology
FST 4504 Food Chemistry
GEOG 1514 Introduction to Meteorology
GEOG 3104 Environmental Problems, Population, and Development
GEOG 4354/GEOS 4354 Introduction to Remote Sensing
GEOS 2104 Elements of Geology
GEOS 3014 Environmental Geosciences
GEOS 3034 Oceanography
GEOS 4804 Groundwater Hydrology
ISE 4004 Theory of Organization
ISE 4304 Global Issues in Industrial Management
LAR 3044 Land Analysis and Site Planning
MINE 2504 Introduction to Mining Engineering
SBIO 2124 Structure and Properties of Sustainable Biomaterials
SBIO 3114 Biodeterioration, Bioconversion and Bioenergy
SBIO 3434 Chemistry and Conversion of Sustainable Biomaterials
SBIO 3444 Sustainable Biomaterials and Bioenergy
SYSB 2025-2016 Introduction to Systems Biology
SYSB 3115 Network Dynamics & Cell Physiology
UAP 3354 Introduction to Environmental Policy and Planning
UAP 4344 Law of Critical Environmental Areas
UAP 4374 Land Use and Environment: Planning and Policy
UAP 4384 Pollution Control Planning and Policy